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Abstract

With the popularity of mobile devices, spatial crowdsourcing has attracted widespread atten-
tion, which collects spatial tasks with location constraints and assigns them to workers who
can travel to certain locations to participate in and obtain profits. One of the core issues is task
assignment, in which tasks should be assigned to proper workers to maximize the overall util-
ities. In the paper, we consider a Utility-driven Destination-aware Spatial Task Assignment
(UDSTA) problem, where the utility of a worker is modeled as the completed task profit minus
the worker’s travel cost, which is more realistic and involves route planning while assign-
ing tasks. We prove that this problem is NP-complete and propose a dual-embedding based
deep Q-Network (DE-DQN) to sequentially assign tasks to proper workers. Specifically, we
design a utility embedding to reflect the top-k utility tasks for workers and worker-task pairs,
and a coverage embedding to represent the potential future utility of an assignment action.
The state of DQN consists of the utility embedding, remaining workload, and cumulative
utility. Besides, the action of this DQN is formed by concatenating the utility and coverage
embedding. We also provide an enhanced version called DE-Rainbow by using Rainbow
DQN instead of traditional DQN for further optimization. For the first time, we combine the
dual embedding with DQN to achieve a multi-task and multi-worker matching and obtain
the route plans of workers. Experiments based on both synthetic and real-world datasets
indicate that DE-DQN and DE-Rainbow perform well and show significant advantages over
the baseline methods.

Keywords Dual embedding - Deep Q-Network - Task assignment - Route planning -
Spatial crowdsourcing

1 Introduction

Spatial crowdsourcing (SC) has emerged as a new working mode in recent years. It breaks

down complex tasks from task publishers into multiple small and simple tasks that carry
location information. These tasks are then allocated to a large number of mobile workers with
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diverse backgrounds, who can efficiently and quickly reach the specific locations to finish the
tasks [1]. With the prevalence of smart mobile devices and the progress of wireless network
technology, spatial crowdsourcing is permeating many aspects of society and profoundly
altering human lifestyles. Numerous related applications based on spatial crowdsourcing
systems have been proposed and put into practice, such as Common Sense [2] for pollution
data collection, Ear-phone [3] for urban noise sensing, GBus [4] for real time bus information
obtaining, Jam Eyes [5] for traffic jams detection, and Uber [6] for taxis hailing.

One of the core issues in spatial crowdsourcing is task assignment. The purpose is to
allocate tasks with unique attributes such as revenue and location to the most appropriate
workers with characteristics such as service scope and ability [7]. Such a worker-task match-
ing process can be achieved via a spatial crowdsourcing platform, as shown in Figure 1.
Requesters submit tasks to be completed with various requirements to this spatial crowd-
sourcing platform. Simultaneously, workers join in the platform through recruitment. The
platform then matches compatible tasks with workers according to the information from task
pool and worker pool. If the quantities of tasks and workers are small, the assignment problem
would be easy to deal with even with an enumeration or brute force method. Nevertheless,
if the scales of tasks and workers increase, the computational complexity of the problem
may increase polynomially. This is because a valid assignment needs to take all possible
combinations of tasks and workers and corresponding route planning solutions into account.
Therefore, proposing efficient and effective methods for large-scale task assignment problem
in SC deserves in-depth research.

In this paper, we focus on the task assignment issue. Here, multiple tasks and workers
are distributed in a spatial area. A worker has a limited capacity, meaning that the worker
can only receive and complete a certain number of tasks, while a task can only be assigned
to one worker. When a worker travels to a task location, a travel cost occurs, which is often
assumed to be proportional to the distance between them [8]. When a task is completed,
the worker will receive a corresponding profit. Since a worker always wants to maximize
his/her profit while minimize the travel cost, we can define a worker’s utility as the overall
profit of his/her completed tasks minus the overall travel cost [9]. Then, given the initial
positions of all workers and tasks, and the corresponding task completion profits, the goal of
our problem is to match each required task to an appropriate worker with a valid route plan,
so as to maximize the total utility of all workers. Such problem is defined as Utility-driven
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Figure 1 An illustration of task assignment process in spatial crowdsourcing
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Destination-aware Spatial Task Assignment problem (UDSTA). For the problem, we consider
the situation where the number of tasks is less than the number of workers multiplied by the
maximum worker’s capacity, whose rationality is discussed in detail in Section 3.2.

Figure 2 exhibits a toy example showing the initial positions of 2 workers wy, wp and 9
tasks s1, 52, - - - , S9, where the radius of nodes represents the profit of tasks, and the length
of edges represents the distance between two locations. Assuming that the two workers’ cost
are equal to the distance of the path, the proper task sequence for worker w; with capacity
c1 = 3 will be a route plan written by 1 = [s2, 53, s5]. In fact, worker wj chooses a task
with the highest utility at each step. However, such greedy idea does not always make sense.
If worker wy with capacity ¢ = 2 adopts a greedy policy, he/she will pick up se¢ instead
of sg at the first step. Hence, the greedy route r; will be [se, s7], obtaining a total utility
of 6. However, a better route r, = [sg, s9] obtains a utility of 7, since there exists better
neighboring tasks around sg compared with s¢. However, computing such neighborhood
structures deterministically is somewhat similar to a flooding algorithm, with impractical
exponential computation complexity.

Among the previous work, [9] proposes a Utility Priority algorithm by greedy search for
high utility tasks. However, the method fails to address the difficulty shown in Figure 2.
[10] considers the task similarity and proposes efficient heuristic algorithms for the single-
worker and multi-worker scenarios, yet it does not consider the potential future utilities of
the current assignment. These traditional algorithms may fall into local optimum and cannot
obtain global optimum solutions [11]. Even worse, in the large-scale scenario, solving the
problem becomes extremely time-consuming [12]. Hence, to leverage the advantages of
machine learning techniques in finding global optimal solutions and handling large-scale
problems, we propose a new value-based deep reinforcement learning framework called
dual-embedding based deep Q-Network (DE-DQN). DE-DQN innovatively employs dual
embedding vectors as the input of DQN to learn the optimal strategy of task assignment.
Specifically, We design the utility embedding to reflect the information of top-k utility tasks
for workers and worker-task pairs, which measures the possible profit of workers and worker-
task pairs in the current state. Next, the coverage embedding is designed to represent the
information of potential future utility of workers with an assignment action. Accordingly,
we concatenate the utility embedding, the remaining workload capacity, and the cumulative
utility to form the state of DQN, which represents the task environment around the workers.
Besides, we concatenate the utility embedding of worker, task, potential future task, and the
coverage embedding to represent the action of DQN, assigning a task to a worker at each
step. The goal of the DQN framework is to identify the best action from the action space. An
enhanced method called DE-Rainbow is proposed using the Rainbow DQN to replace the
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Figure 2 A toy example with 2 workers and 9 spatial tasks
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original DQN. The Rainbow DQN provides important extensions including DDQN, Dueling
DQN, prioritized replay, distributional RL and Noisy Net [13].

The experimental results based on both synthetic and real-world datasets indicate that
DE-DQN and DE-Rainbow can significantly improve the efficiency of problem solving and
performs well in large-scale scenarios. What’s more, since UDSTA problem is a generic
setting for task assignment problem, the proposed DE-DQN and DE-Rainbow can be easily
adapted to address many variant problems such as sweep coverage problem [14] and vehicle
dispatching problem [15] by adding time-related factors and changing the goal.

To summarize, our contributions are presented as follows:

e We precisely formulate the task assignment problem with utility and destination proper-
ties in spatial crowdsourcing (named UDSTA problem), and prove its NP-completeness.

e We design a dual embedding integrated Deep Q-Network, and propose the DE-DQN and
DE-Rainbow method to solve the UDSTA problem.

e We compare DE-DQN and DE-Rainbow with other baseline methods through experi-
ments on synthetic and real-world datasets and present the advantages of our methods.

The rest of the paper is organized as follows. Section 2 introduces the related work of task
assignment problem and DRL for crowdsourcing. Section 3 provides preliminaries and prob-
lem statement. Section 4 introduces the design of dual embedding. Section 5 and Section 6
explains the framework and training of DE-DQN and DE-Rainbow respectively. Section 7
presents the experiment results compared to baseline methods. Section 8 makes conclusion.

2 Related work
2.1 Task assignment problem

Task assignment problem in crowdsourcing has been extensively paid attention to and
researched in the past ten years as most worker-task matching requirements in real world
application can be formulated as this problem [26]. There are different kinds of optimization
objectives including task number [24], quality of service [16], fairness [25], platform rev-
enue [18], and matching stability [27]. For example, [28] aims at minimizing the maximum
travel time and total latency of the requests. [29] aims at minimizing the sum of the travel
time and penalty. In our discussion, we aim at maximizing the overall utility.

Several studies have also discussed different constraints on the task assignment problem.
[9] defines a team-oriented scenario, considering the worker’s skill constraint of tasks. [30]
considers the pick-up and drop-off problem in the car-hailing scenario. In our discussion, we
consider a scenario where workers can complete tasks directly at the task location.

Multiple methods based on different technologies have been studied and mentioned in
recent works [31]. A common model employed for solving task assignment problem is
bipartite graph [32], in which tasks and workers are abstracted into nodes of both sides. [22]
explores distributed and centralized algorithms for task selection to improve the quality of task
accomplishment, where the distributed one is a game theory based approximation algorithm,
the centralized one is a greedy based approximation algorithm. Besides traditional methods,
[23] first presents a deep reinforcement learning framework on vehicular crowdsourcing
problem, both maximizing task accomplishment and coverage fairness, and minimizing the
energy cost.

To be detailed, Table 1 provides an overview of the work of different literatures solving
task assignment problem including scenario, goal, mode, side, model and method.

@ Springer



13

Page 5 of 25

(2025) 28:13

World Wide Web

ApaaIn 1dO aoundeA yog  duIuo JUQWUSISSE Sk} XeJA QIEME UOTBIO] [szl

Apaa1n) MOJJ XBUI JS00 UTJA INIOA  QuluQ JUSWUSISSE Sk} XeJ QIEME 90UIRJI] [¥2]

T doeg UudALIp A)Isorn)) I[N QUIPFIO uonordwod yse) Xe SuIOINOSPMOID TR[NOTYOA [¢2]

owed [enudjod uersokeg 9InoI1 own-yse], INIOA\  QUIPIO Ayenb uonordwos xen UOIOJ[3S YSBL, [z2]
Apa21n) ordoy yuoje| IMIOA\  QuIuQ ured xej areme AjrenQ) [12]

K109y awen/Apaain / INIOAN  SUIgIO Kypenb uoneradood xen areme aaneIadoo) [oz]
K109Y) awen/Apaain) uonewrxoxddy INIONN  QUIRIO JuowuISSe Yse) XeJA Areme douapuadag [11]
wyILIo3 e Jeaur| SoLIoW uonen[eAq yog  duIuo uona[dwod yse) Xe areme Afend) 611
onsLNaY Apaaln) / INION  QUIPIO uono[dwod yse) XejN Areme D[S [6]
TeME-PUBIIA(] 1dO d1seyo0ls§ yog  ouruQ 1500 U Surreys opry 811

uonnred ydein/Apooin UQALIP BIe(] IO,  euluO JuoWUSISSE St} XeJN VL 2And1paId (1]
punoq 2ouapyuod roddn dVIA [eLI0jRUIqUOD) 191sonboy  auruQ Kyrenb uonordwos xejn JUOWIIINIOAT JONIOAN [91]
POUIRIN [9POIN apIS PO [eoD OLIBUQOS  QINJBIAN]

SuroImospmoId [eneds ur juowuSIsse yse) J0J oM pAje[ey | d|qel

pringer

Qs



13 Page6of 25 World Wide Web (2025) 28:13

2.2 DRL for crowdsourcing

Reinforcement learning (RL) has become a hotspot in research field recently. Some variants
of RL also emerge combined with other methods. Deep reinforcement learning (DRL) com-
bines deep learning methods with traditional RL methods, which is found to be suitable for
solving decision optimization problems [33], and therefore has been widely researched for
improvement and application. Similar to RL, DRL can also be distinguished by whether it is
model-based. As for model-free DRL, Deep Q-Network (DQN) is a popular method based
on value function [34], which utilizes convolutional neural network and Q-learning [35], and
performs well in many applications including task arrangement in crowdsourcing [36]. In
addition to value-based DRL, policy-based DRL presents a significant advantage in continu-
ous action space problem, such as deep deterministic policy gradient algorithm (DDPG) [37].

In recent years, some works have used deep reinforcement learning to solve the task
assignment problem in the spatial crowdsourcing [38]. [39] presents a spatial crowdsourcing
problem which allows but not forces the workers to cooperate. A Multi-agent DRL Model
on the base of Advantage Actor-Critic (A2C) is proposed in this work, involving attention
mechanism to utilize the information of other workers. [40] studies spatial crowdsourcing
in drone data collection and promotes Fully Decentralized Multi-Agent Proximal Policy
Optimization (FD-MAPPO). [41] pays attention to environment sensing crowdsourcing with
a method of combining DRL with 3-dimensional Convolutional Neural Network (CNN).
[42] proposed a Deep Deterministic Policy Gradient (DDPG) based framework to gain a
high revenue in each round. However, they choose an assigning action without considering
the effect on future revenue. Shan et al. proposed an attention mechanism to the future
revenue [43]. [44] introduces geographic partition into spatial crowdsourcing and conducts
the RL method to solve the problem. [45] proposes auxiliary-task based DRL to achieve
multi-objective optimization in participant selection problem of mobile crowdsourcing.

In these previous works, they do not use explicit designs, such as eigenvectors, to learn the
effect of assigning actions on future revenue. Here, we propose a dual embedding method,
which explicitly considers the future impact of an assigning action when designing the state
and action of DQN, reducing the difficulty of DQN learning. Table 2 illustrates the classifi-
cation of reinforcement learning models and the corresponding typical models, while Table 3
shows the comparisons of goal, method, future revenue and explicit expression. As assigning
tasks to appropriate workers corresponds to a discrete action space, we can calculate the
reward for each assignment without having to build a model to reflect the response of the
environment to actions, so we choose DQN to solve the UDSTA problem. What’s more, most

Table 2 Classification of RL models and corresponding typical models

Criteria 1 Criteria 2 Typical Models
Model-Free Policy Optimization Policy Gradient€, A3C [46], TRPO [47], PPO [48]
Q-Learning Q-Learning”, DQNP [49]
Policy Opt+Q-Learning DDPGF [50], TD3€ [51], SACE [52]
Model-Based Learn the Model 12A [53], MBMF [54]
Model is Given AlphaZero [55]

#*AC means that the model A is suitable for the continuous action and AP means that the model A is suitable
for the discrete action.
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Table 3 Comparisons on literature of DRL for crowdsourcing

Literature ~ Goal Method Highest gains  Long-term gains
(Breadth) (Depth)

[39] Max total utility Multi-agent DRL v

[40] Max total utility FD-MAPPO v

[41] Max data collection DRL+CNN v

[42] Max total utility DDPG v

[44] Max task allocation Attention+GNN v

[23] Max task completion DRL v

[43] Max total utility Attention v

[45] Max worker utility ADRL, v

Ours Max worker utility Rainbow DQN v v

previous works take the future revenue into concern but explicit expression in our paper is
not involved.

3 Preliminaries and problem statement

In the paper, we mainly focus on the scenarios such as region monitoring, tourist photoing,
household service, etc., where the location distribution of tasks and workers has more impact
on the solutions, and time-related constraints are less sensitive (e.g., the time windows can
be counted by days, or weeks, which are sufficient for the computation of a task assignment
algorithm). In such scenarios, tasks are scattered in different locations. To obtain profits,
workers are motivated to complete a set of tasks (whose size is denoted as the capacity of
the worker). Meanwhile, workers need to bear the costs such as traveling expense when
completing tasks. Hence, the utility of a worker is equal to the profit minus the cost and the
objective of a task assignment problem is to maximize the overall utility for all workers. For
time sensitive scenarios, time-related factors should be considered to the assignment and thus
included in the DQN framework, which we plan to investigate in future work.

3.1 Extensions to DQN

In addition to standard DQN, many other improved methods and extensions were raised.
Since DQN often selects over-valued actions, Double DQN is proposed in [56] to select
appropriately valued actions by constructing a Q’ function. In addition, Dueling DQN uses
a state function and an action advantage function to learn the value of the static environment
itself and the additional value brought by the action respectively to achieve better stability
than DQN that directly evaluates the Q-value of the action [57]. Besides, Compared with the
random sampling used by DQN, Prioritized Experience Replay is proposed in [58] to samples
more data with larger TD error, so that the model can learn better and faster. Noisy net is
introduced in [59] to increase the exploration ability of DQN. Compared with e-greedy that
only explores more actions, noisy net has a stronger exploration ability by adding noise to the
parameters for state-independent consistent exploration. Distributed RL makes the reward
obtained by the model more realistic by estimating the distribution of the reward instead of the
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expected reward [60]. Therefore, we propose an enhanced framework by using the Rainbow
DQN which combines the above extensions [13]. Table 4 summarizes the extensions and the
corresponding advantages to DQN.

3.2 Problem formulation

Following most existing works in crowdsourcing [61], we adopt the round-based model to
formulate the UDSTA problem. In each round, the platform operates on a set of pended tasks
and workers. Some basic definitions related to worker, task, and utility are introduced as
follows.

Definition 1 (Spatial task) A spatial task s; is denoted by a tuple (lj, pj), where lj. is the
geographical location of task s;; p; is the profit when task s; is completed. Note that, in the
spatial crowdsourcing, a task can only be completed when the worker is at the location of
the task.

Definition 2 (Worker) A worker w; is denoted by a tuple (/”, r;, C;), where IV is the current
location of worker w;; r; is w;’s route, which is an ordered task sequence consisting of tasks
assigned to w;; C; is w;’s capacity limit of workload.

Definition 3 (Worker’s utility for completing task) The utility of worker w; to complete task
s is defined by a function u(-) where

u(wi, s;) = pj — cost(w;, s;) ey
Here cost(w;, s;) represents the cost for worker w; to complete task s;.

Definition 4 (Overall utility) The overall utility of a round is defined as the sum of workers’

utilities, i.e.,
Uar =y pj— ) cost(w;) ©)
s* w;
J

where sj represents the assigned tasks and cost(w;) = ) cost(w;, s;) represents the

s /Er,-
overall cost of worker w;.

Table 4 Extensions to DQN

Extensions DQN Drawbacks/ Descriptions of Advantages
Components extensions
Double DQN [56] select over-valued design Q function select proper-

Dueling DQN [57]

Prioritized Replay [58]

Noisy net [60]

Distributed RL [59]

actions

action evaluation
function

random sampling

e-greedy: explore
more actions

obtain  expected
reward

design state &
action function
sample data with
large TDE

add noise to
parameters

obtain reward dis-
tribution

valued actions
achieve better sta-
bility

learn better/faster

stronger  explo-
ration ability
More in line with
reality
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By default, U,j; should be positive after assignment, otherwise workers would work at a
sacrifice, which is impractical apparently. We also consider the task assignment mode with
several constraints as follows:

e Uniqueness constraint: A spatial task can only be assigned to one worker.

e Spatial constraint: A spatial task can be completed only if the worker arrives at the
location of the task, which means the destination of s; should be included in r; if it is
assigned to wj.

e Capacity constraint: Number of tasks assigned to w; cannot exceed the workload capac-
ity limit C;. C; should be a positive integer, usually setting as a number within [3, 10] in
practice.

Without loss of generality, we also have the following assumptions.

Assumption 1 Since a worker should arrive at the location of a task to complete the work,
we assume the cost(w;, s;) to be proportional to the distance dist(l}", l'j.) between them
referring to [8], which means

cost(wi, s;) = B - dist(l}’, l‘;) 3)

where §; is the cost per unit travel distance for w; and dist(-) is distance function. Here, we
consider the Euclidean distance between pairwise points.

Assumption 2 According to individual rationality assumption, a worker accepts the task only
if the utility is positive, i.e., u(w;, s;) > 0.

Based on the aforementioned discussions, we formulate the Utility-driven Destination-
aware Spatial Task Assignment problem (UDSTA) as follows.

Definition 5 (Utility-driven Destination-aware Spatial Task Assignment problem) Given a
worker set W and a task set S, the Utility-driven Destination-aware Spatial Task Assignment
problem (UDSTA) aims to find a global assignment solution A to maximize the overall utility
for workers, while satisfying the aforementioned assumptions and constraints.

In some literature, task assignment problem is also referred to as a relaxed matching prob-
lem or covering problem, because we are pairing tasks with workers, but usually achieving a
multiple-to-one mapping according to the worker’s capacity constraint. Accordingly, some
design of our embedding methods are motivated from the traditional combinatorial algorithms
solving matching or covering problems, which will be further discussion in Section 4.

Another thing worth discussing is the number of workers, or the cardinality |WW| of worker
set W, versus the number of tasks (the cardinality |S| of task set S). Although intuitively
we think W| > |S], since a crowdsourcing platform usually has thousands of registered
workers, practically the number of active workers are far less than that of registered ones, so
in our discussion, each round we may have

IS| > W] - max {Ci}. (C))

w;eW
Inequality (4) implies that we do not need to consider the completeness of tasks or the
maximization of finished tasks s*, which may bring a multi-objective optimization problem,

since once we maximize the overall utility in each round, we have successfully “assigned”
all possible workers, inducing a maximum number of finished tasks simultaneously.
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3.3 NP-completeness analysis

Also the definition of UDSTA problem is easy to understand, it is indeed an NP-Complete
problem. We prove its NP-completeness through a polynomial time many-to-one reduction
from a variation of the TSP problem, say, Traveling Salesman Path problem (abbreviated as
TSP-Path) without returning to the original source, which has been proved to be NP-complete
in [62].

Theorem 1 The UDSTA problem is NP-Complete.

Proof 1t is trivial to check a certificate of the UDSTA problem in polynomial time. Thus the
UDSTA is an NP problem. Next, let us consider a polynomial time many-to-one reduction
from TSP-Path, written as TS P-Path <j, UDST A.

Given any instance of TSP-Path problem, where there are n cities forming a graph G =
(V, E) with |V| = n. We have a distance function d(e) € Z* for each e = (v;, vj) € E,
and a positive integer K. The decision version of this problem wants to answer “Is there
a path with n vertices having length K or less, i.e., a permutation [vz (1), Vz(2), *** » Vr(n)]
of V such that Z:‘:_II d(Vr (i), Vz(i+1)) < K.” Now we can construct a special instance of
UDSTA problem. Let S = V (each with its corresponding location / j). The profit p; of each
task is sufficiently large, i.e., a positive P uniquely. Let W = {wj, w;} with two workers,
whose positions are the same as vy, say, [ 1" = lé" = l‘f. Define the cost functions of each
pairwise w; and ¢; as the distance function d (-, -) with the same locations, and the capacities
of each worker are C; = C, = |V|. The cost per unit travel distance 8; and B, are set as
1. Given another positive integer K’ = n - P — K, the decision version of UDSTA problem
asks whether we have a task assignment strategy with total utility larger than of equal to K’.

Since the workers want to earn more profit while pay less cost, the maximum profit in
this case should be n - P, meaning all tasks are assigned successfully. Then based on (2),
maximizing utility is converted into minimizing the overall route length. Now we are able
to conclude in polynomial time that: if the TSP-Path instance has a “yes” solution with K,
then the constructed UDSTA instance has a “yes” solution with K’ = n - P — K. It is easy
to plan two routes for w; and wy along the TSP path starting from vy, and traveling to two
opposite directions. If v; is the starting vertex of this TSP path, then only w; needs to follow
the TSP path, and w; can stay at where it is. Reversely, if this special UDSTA instance has
a “yes” solution, the route plans of two workers must form a path including each vertex one
and only once. Otherwise any other paths would bring an overall cost greater than K. Thus,
the combination of two route plans together forms a TSP path successfully, which gives a
“yes” answer to the original instance of TSP-path. According to Karp’s definition of the
NP-Completeness reduction, we have finished this proof. O

The important notations in the rest of the paper are summarized in Table 5.

4 Dual-embedding

Since the travel cost is assumed to be proportional to distance between worker and task,
we utilize the graph to model the destination-aware spatial crowdsourcing. To solve the
UDSTA problem, we propose a neural network-based learning method called DE-DQN,
and an enhanced version called DE-Rainbow. We first describe the dual-embedding method
to obtain the vector representations of workers and tasks for flexible computation in the
neural network-based learning in Section 4. Then, we use a Deep Q-Network (DQN) to
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Table 5 Definitions and notations

Symbol Definition

wi, W a worker w; = (ll?”, ri, C;); all workers form a worker set W, w; € W
Sjs S a spatial task s; = (l;, pj); all tasks form a spatial task set S, sj € S
s;f, S* an assigned spatial task sj; all assigned tasks form a set S*, s}f e S*
lil”, l; location of worker w; and task s ;

ri task sequence received by worker w;

C; capacity limitation of task assigned to worker wj;

Pj profit when task s; is completed

dist(-,-) distance between two locations

Bi cost per unit travel distance for w;

cost(w;, sj) cost for worker w; to complete task s

u(wi, sj) utility for worker w; to complete task s;

U overall utility for worker set, Uyj; = Zv; pj— 257 cost(w;, ri, s})

sequentially assign tasks to proper workers and obtain the global task assignment solution
in order to achieve the objective of maximizing the overall utility in Section 5. We also give
an enhanced version called DE-Rainbow by using the Rainbow DQN to replace the DQN
Section 6.

We think that numerous workers and tasks constitute a crowdsourcing graph. The graph
consists of a large number of nodes with worker and task attributes and edges with distance
information, which makes the graph complex and difficult to directly perform DRL to assign
tasks. Therefore, we hope to first extract the important information for task assignment from
the graph and design the components of DQN based on the information.

As is shown in Figure 2, A temporary low utility assignment action may achieve a higher
utility global assignment because of its proximity to another high utility assignment action.
We define the impact of an assignment action on global utilities as potential future utility,
which should be reasonably considered to obtain higher global utilities.

Since the potential future utility of an assignment can be measured from the breadth
and depth perspective, we propose a dual-embedding method for nodes. For a worker, we
can select the top-k neighboring tasks by sorting the utility. Therefore, we use the utility
embedding to reflect the top-k neighboring tasks’ utilities from the breadth perspective and
the coverage embedding to represent the potential future utility of an assignment linked with
the remaining capacity of the worker from the depth perspective, which makes the learning
of DQN feasible.

4.1 Utility embedding

In our scenario, the state of the DQN represents the environment containing information
about optional workers and uncompleted tasks, and the action represents matching a worker
with an uncompleted task, so we design two types of utility embedding for state and action.
Here, we use the worker-task pair (w;, s;) to represent an assignment decision. For the state,
we design the utility embedding to reflect the top-k neighboring utility tasks for worker w;
according to the worker’s historical record, current location, and neighboring uncompleted
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tasks. For the action, we similarly design the utility embedding for assignment decision
(wj, 5;) to reflect the top-k neighboring utility tasks when s; is assigned to w;. Compared
with the greedy-based and heuristic algorithms, the utility embedding could be helpful to
provide a larger feasible search space because it considers the top-k assignment decisions
with potential in the future, rather than only the temporarily optimal decision.

4.1.1 Representation vector for worker

For worker w;, we use wl].‘ to represent the index of the k;;, highest utility task for w;, and then
obtain uncompleted task sequence with the top-k highest utilities for w;: [s,,1, 5,2, - - -, 5,¢].

v 1 1
Therefore, the utility embedding for w; is

Vi, = (i 5,0, 0 s,2), - uwi,s,0) 5)

4.1.2 Representation vector for worker-task pair

An assignment can be seen as a worker-task pair (w;, s;), which means that s; is assigned
to w; and w; arrives at l; In the scenario, we define u,, (s, sk) = px — Bi - dist(l‘;., I5)to
represent the utility for w; to complete si after completing s;, and use (w;s j)k to represent
the index of the k;;, highest utility task when w; arrives at lj Hence, the utility embedding
for pair (w;, 5;) is

Vi = (0057 S ) 0 5 S0+ 1 55 S0 ) ©)

4.2 Coverage embedding

The coverage embedding is designed to represent the long-term potential future utility of an
assignment decision from the depth perspective, which is helpful to estimate the value of an
action of DQN. Specifically, for the assignment decision (w;, s;), we define the propagation
chain with the remaining workload capacity rc; as length to represent the possible future
tasks assigned to w;. Therefore, the long-term potential future utility could be denoted by the
sum of the highest neighboring task utilities in the propagation chain. We define sz’; 5! to
represent the highest utility task corresponding to the m;;, position of the propagation chain.

For instance, s = S, 1. Especially, s° = s;. Hence, for pair (w;, s;), we
(wjsj)! (w"y(wi.\'j)]) P ¥ (wis;)! J pair (w;, s;)

can express the long-term potential future utility of assigning sfj)l_ s; o w; as

rei—1
-1
i, (5 S ) = Uy (8 Sy ) + Dty (0 Lo stn ) @)

m=1

Therefore, for the assignment decision (w;, s;), we concatenate the top-k highest task
utilities to form the coverage embedding V¢ (w;, s;) as

V@i, 57) = (1, (55 sy 1, 85 S 0 ®)
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5 Framework and training for DE-DQN

Based on the discussion in Section 3.1, DQN is adopted to solve the UDSTA problem. We
propose a dual-embedding based DQN method called DE-DQN using the combination of
the above obtained dual embedding and DQN. Figure 3 shows the framework diagram of
DE-DQN (without extensions).

5.1 DQN components

The components of DE-DQN are described as follows.

5.1.1 State

We design the state to reflect the existing worker-task matching and the availability of workers
to take on tasks in the spatial crowdsourcing, which could be measured from three perspec-
tives: potential future utility, remaining workload capacity and cumulative utility. Specifically,
the state vector concatenates the above three parts. The first part is the mean of the top-k util-
ities for all workers V§, = ﬁ Zwiew V3, - The second part indicates the total remaining
workload capacity rc¢ = Zw,- cw rci. The third part records the sum of cumulative util-

ity and cost of completed tasks uc = (Zsjes* Pj» Zw,- cost(w;)). Hence, the state vector

xs = (Vi llrclluc).

Rainbow DQN
reward Ex i

max Q' (x4, x4, 8") \ Double DQN \
wi.s;

[ ] e
a [ ] H
Worker w;y

DON

\: Dueling DQN \
G \ Prioritized replay \
\: Multi-step learning \

[ Distributional RL |
( Noisy net ]

i e
Ppy=4

- Select
i«

Profitp, = 5 Update 8

using SGD

°
o M=%t &
e & °

Spatial Crowdsourcing Graph

i 1t
s argmax Q (X, Xq, 0 | X,
gwi,sj Qs %0, 0] [xs [xs, xq, reward, xg]

X..)

HEER 7
Worker u . HAA
Representation of Current State
o q u — (pu
Update according Wity Il izitding 7 Pair xs = (V. e, uc)
to Selected Action Dual Embedding EER EEE
Potential Pairs Representation of Action
O Coverage Embedding V¢ EEER xq = (Vilt, Vu)‘,x,rVu}“s( o Ve(wys)
................... . 5 wisj)
k e
Remaining Capacity rc
2000 s Capciy N 2
[ @
e ® ] a
_. [ . . Candidate Action Set
Assigned Spatial Task Set Cumulative Reward and Cost uc A
......................................... - 4 Environment Representation

Figure 3 The illustration of DE-DQN and DE-Rainbow. Without extensions, DE-DQN first calculates the
utility embedding V* and coverage embedding V¢ for workers and pairs. The state representation x; is the
concatenation of three parts: mean of the utility embedding for workers V¥, remaining capacity rc, and cumu-
lative reward and cost uc. The assignment action representation x, is the concatenation of utility embedding
and coverage embedding. DE-DQN selects the proper action based on the current state and candidate action
set. After determining a worker-task pair, the agent receives the reward, and then updates the corresponding
variables and representations. DE-Rainbow uses the Rainbow DQN including extensions such as Double DQN
and Noisy net to replace the DQN

@ Springer



13 Page 140f 25 World Wide Web (2025) 28:13

5.1.2 Action

The action represents an assignment decision (w;, s;). We measure the value of an action
in terms of both depth and breadth, which means we combine the utility embedding (6)
and coverage embedding (8) of an assignment decision to design the action of DE-DQN.
Besides, we consider the potential future utility of the corresponding possible next assign-
ment. Specifically, we concatenate the utility embedding of the assignment (wj;, s ), potential

future assignments {(w;, S(wisj)l), s (i, S(wl,_\.j)k)}, and coverage embedding of (w;, s;)
to indicate the action x, = (Vi ||V”w,-sj ”Vz”(w,.xj)l - IV (w;, s5)).
5.1.3 Reward

The reward represents the utility obtained by an assignment action. When assigning task s;
to worker w;, the reward is equal to p; — cost(w;, s;).

5.1.4 Policy

Since DQN is an off-policy algorithm, a neural network should be employed to approximate
the Q-value of an action. In our DE-DQN, we take different algorithms in the training phase
and the testing phase. Specifically, the e-greedy algorithm is adopted in the training stage
to do more exploration, while the pure greedy algorithm is adopted in the testing stage to
maximize the overall utility.

The e-greedy policy in the training stage is

arg max (0] W.p. €
Ye—greedy(Xs) = (wi.s;)lsj€5=5%) 9

a random feasible pair ((w;, s;)|s; € S — S*) 0.W.
The pure greedy policy in the testing stage is

Vgreedy (x5) = arg max 0 (10)
((wi,sj)ls_,-eS—S*)

5.2 Behavior and target Q-network

The DE-DQN framework consists of a behavior Q-network and a target Q-network with
the same structure and different parameters to further improve the stability of Q-value in
the training procedure. The two Q-networks both use the Q-value to evaluate the value of
assigning a task to a worker in a given state. The difference is that the behavior Q-network
is used to evaluate the value of the action in the current state, while the target Q-network
is used to evaluate the value of the action in the next state. Besides, the parameters of the
target Q-network remains unchanged in C training steps to reduce the correlation between
the predicted Q-value and the target Q-value. After C steps, the parameters of the behavior
Q-network are copied to update the parameters of the target Q-network.

Specifically, let & and 6’ be the parameters of the behavior Q-network and the target Q-
network, respectively. The inputs of the neural network are the state x; and the action x,.
Hence, the behavior Q-network and the target Q-network could be denoted by Q (xy, x4, 6)
and Q' (x;, x4, 0), respectively. The training objective can be formulated as minimizing the
loss function L(0): )

L(®) = E[(' — Q(x!. x}.0))] (1)
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vt = reward’ +n max Q'(x't! PARNCD) (12)

Ky 9
W;,Sj

where x§ is the state vector at step ¢, x; is the action vector at step 7, and n € [0, 1] is the
discount factor.

5.3 Training process

Algorithm 1 DE-DQN Agent Training.

Require: Spatial crowdsourcing graph, worker set WV, task set S

Ensure: Parameters of Q-network

1: Initialize replay buffer D;

2: Initialize parameters of the behavior and the target Q-networks, 6 = 0’;
3: for episode <— 1 to E do

4 Initialize the assigned spatial task set S* = f4;
5. fort < 1w}, C;do

6: Select action by ye —greedy policy;

7 Calculate reward?;

8 At e fraed, b

9: Store [xf, x, reward’, x*1into D;

10: Randomly sample a minibatch data from D;
11: if ¢+ = k then

12: y’ = reward’;

13: else

14: y' = reward' + 1 MaX (.5 ) O/ (T xLF1 ohy;
15: end if

16:  end for

17:  Use SGD to take a gradient descent step on (y' — Q(x!, x%, 6))%;
18:  After C steps, update 8’ = 6.

19: end for

Algorithm 1 shows the training process of DE-DQN. We first initialize the replay buffer D,
which is proposed in [34] to reduce the dependency among data, and the parameters of the
two Q-networks (Lines 1 — 2). For each training episode, we initialize the assigned spatial
task set (Line 4). The episode ends when the number of assigned tasks reaches Zw,» C;, the
sum of capacity of all workers (Line 5). In each episode, we adopt the ye_greeay policy to
choose an assignment action from the discrete action space (Line 6). After selecting an action,
we calculate the next state through a state transition function (Line 8). After obtaining the
corresponding reward and the next state, we store the historical record in the replay buffer
(Line 9). We update the parameters in Q-network by stochastic gradient descent (SGD)
method (Line 15). After C steps, we update the parameters in the target Q-network (Line
16).

6 Framework and training for DE-Rainbow
To better solve the UDSTA problem, we adopt the Rainbow DQN to select the proper
worker-task pairs in each step. DE-Rainbow provides some important extensions to the DQN

framework, including DDQN, Dueling DQN, prioritized replay, distributional RL, and noisy
net [13]. Figure 4a illustrates the structure of the original DQN. Figure 4b demonstrates the
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Figure 4 Structural comparisons on various extensions of the DQN

structural variations of the DQN by the above extensions, where the red boxes represent
the specific changes for each distinct extension described in Table 4. DDQN is effective in
diminishing overestimation bias and enhancing learning stability. Dueling DQN and Priori-
tized Replay contribute to a boost in learning efficiency. Distributional RL is beneficial for
augmenting robustness. Moreover, Noisy Net is conducive to refining exploration strategies
and facilitating adaptation to dynamic environments.

We combine the above dual embedding to design the state and action of Rainbow, which
is called DE-Rainbow. The state, action and reward representation for DE-Rainbow is the
same with the ones of DE-DQN. The differences are that the training policy and structure of
deep neural network are changed. Compared to the traditional DQN, we use the noisy net to
train the network. Compared to the direct calculation x, = Wx; + b, the noisy net adds the
noisy stream as follows:

Xa = (Wxs +b) + (Wyoisy © €)x5 + bpoisy © €?) (13)

The training objective can be formulated as minimizing the loss function J(0) with the
multi-step learning:

J(®) = E[(y) — Q(x%. x4, 0))] (14)
x"* = argmax Q(x!1, x,, 0) (15)
R N—-1
yi = Z(yk)rewardt + N max Q’(xtS+N, Xl 0" (16)
k=0
O(xs, xa,0) = V(xg, x4,0) + Axy, X4, 0) (17)
V (x5, Xa, 0) = ) 2i pi (¥, Xa, 0) (18)
A(xs, Xa, 0) = Y ai pi (X, Xa, 0) (19)

1
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where x{ is the state vector at step 7, x* is the node representation of the corresponding
action, y € [0, 1] is the discount factor. Equation (15) is to select the node with DDQN.
Equation (16) uses the multi-step learning. Q value is calculated base on the dueling network
in (17). Equations (18) and (19) are to calculate the Q-value based on the distributional RL.
The training process for agent is shown in Algorithm 2.

Algorithm 2 DE-Rainbow Agent Training.

Require: Spatial crowdsourcing graph, worker set WV, task set S

Ensure: Parameters of Q-network

1: Initialize prioritized replay buffer D;

2: Initialize neural network Q with parameter set @ and target neural network Q’ with parameter set6’,6 = 6’;
3: for episode <— 1 to E do

4:  Initialize the assigned spatial task set S as @;

5:  Initialize the representation vector xg of the set S;
6: fort < 1w}, C;do

7: Sample a noisy network &;

8: Select action by arg maxy, Q(xs, xq, &, 0);

9: Calculate reward’ according to reward(xs, xq) = pj — cost(wi, s;);
10: Xt fr(xh xbys

11: Store [xL, x, reward’, x§+1] into D;

12: Randomly sample a minibatch data from D;
13: Sample the noisy variable & for Q;

14: Sample the noisy variable &' for Q';

15: if = k then

16: y' = reward’;

17: else

18: Calculate y’ according to (16);

19: end if

20:  end for

21:  Use SGD to take a gradient descent step on (y' — Q(x%, x%,, 6))%;
22:  After C steps, update 6’ = 6.
23: end for

7 Experiments

In this section, we conduct experiments on both synthetic and real-world datasets, and evaluate
performances of baseline algorithms, DE-DQN and DE-Rainbow framework.

7.1 Experiment setups

Dataset overview The experiments are carried out on two datasets: Gowalla! and synthetic
(SYN).

Gowalla is an open source real-world dataset [63], including a total of 6, 442, 890 check-
ins of users from Feb 2009 to Oct 2010. Referred to the practice in [64], we set the distributions
of workers and tasks respectively according to the number of check-ins for the Gowalla
dataset. Specifically, we choose the locations where the number of user check-ins is greater

1 http://snap.stanford.edu/data/loc- Gowalla.html
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Table 6 Percentage of tasks in different value ranges

Type Value

Range (0,0.1] (0.1,0.2] 0.2,0.3] 0.3,0.4] 0.4,0.5]
(0.5, 0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9, 1.0]

Ratio 0.75 0.21 3.5¢72 6.3¢3 1.3¢73
4.50~% 2.0e~4 3.8¢7 2.9¢75 1.9¢75

than 100 as the initial locations of workers, and the locations where the number of item
check-ins is greater than 10 as the locations of tasks by random sampling in the longitude
range from —120 to —110 and the latitude range from 30 to 40. The task profits are sampled
from the real order value distribution in the car-hailing service. Table 6 shows the percentage
of tasks in different value ranges in the Didi Chuxing Chengdu dataset, which indicates that
the number of tasks with high profits is often small in reality. Besides, a distance conversion
function is used to calculate the distance between points with longitude and latitude. The
worker cost per unit travel distance is obtained from a Poisson distribution with the mean of
0.5. These settings are consistent with the real situation.

As for the SYN dataset, we wish to differentiate from the Gowalla dataset in terms of
worker and task distributions in order to test the performance of the proposed model under
different distributions. Hence, we generate the locations of workers and tasks following
a uniform distribution within the 2D space [0, 400]%. The task profit is obtained from a
probability density function of step descent, which is in line with the above observation in
reality. Besides, the worker cost per unit travel distance is obtained from a Poisson distribution
with the mean of 0.1.

Parameter settings The parameter settings are shown in Table 7, where the default ones
are marked in bold. As for training the DE-DQN, we do the training with 500 episodes on
randomly sampled data from Gowalla and SYN.

Baseline methods We take the following methods as baselines for performance evaluation.

e DisGreedy: The DisGreedy algorithm is proposed in [10], which takes distance as the
highest priority criterion for selecting the next task. It assigns the nearest task to workers.

o PftGreedy: The PftGreedy algorithm is also proposed in [10], which takes profit as the
highest priority criterion for selecting the next task. It assigns the task with the highest
profit to the nearest worker.

o Utility Priority: [9] proposes the Utility Priority algorithm, matching the largest utility
worker-task pair at each step.

Table 7 Parameter setting

Parameter Description Value

W] ‘Worker Set 50, 60, 70, 80

|S| Spatial Task Set 800, 900, 1000, 1100
Capacity Mean Mean of {C;} 5,7,10, 15
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Figure 5 Comparison with various [W]|, |S|, and capacity mean on Gowalla

7.2 Performance analysis

All the experiments are implemented on an Apple M1 chip with 8-core CPU and 16GB
unified memory. The DE-DQN, DE-Rainbow and baselines are implemented with Python
3.6. Tensorflow 2.0 is used to build the machine learning framework. As shown in Figures 5
and 6, DisGreedy works better than PftGreedy when travel cost is high on Gowalla, while
PftGreedy works better than DisGreedy when travel cost is low on SYN. However, DE-
Rainbow, DE-DQN and Utility Priority perform well regardless of the change of cost.

Effect of |WW| As shown in Figures 5a and 6a, the performance of DE-Rainbow and DE-
DQN is better than that of other baseline algorithms with various |WW|. Simultaneously,
the performance gap of DE-Rainbow and DE-DQN over Utility Priority increases as |W)|
increases, indicating that DE-Rainbow and DE-DQN are suitable for the complex spatial
crowdsourcing scenario where there exists a great quantity of workers. We note that the
performance of algorithms degrades when |[WW| = 60 compared with V| = 50 on Gowalla,
indicating that the performance is influenced by data instances.

Effect of |S| As shown in Figures 5b and 6b, DE-Rainbow and DE-DQN achieve the highest
overall utility with various S. We note that DE-Rainbow, DE-DQN and Ultility Priority can
discover better tasks as |S| increases compared with DisGreedy and PftGreedy. Simultane-
ously, the performance gap between DE-Rainbow, DE-DQN and Utility Priority decreases
as |S| increases on SYN. This may be because Utility Priority can benefit more from the
increase of highly profitable tasks when the total worker workload capacity is constant within
a uniform distribution.

Prad __» -
_a-" 800 UL 800 JUUtL e
2800 e z -7 2 R
= - =700 e~ = -,
E - 5 S600| .~
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Figure 6 Comparison with various |WW|, |S|, and capacity mean on SYN
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Figure 7 Comparison with the overall utility w.r.t. |[VW| x |S| on SYN

Effect of capacity mean As shown in Figures 5c and 6c¢, the higher the capacity mean of
workers, the better the DE-Rainbow and DE-DQN outperform the baseline methods when the
number of tasks is constant, which indicates that considering future utility is more important
as the total worker capacity is closer to |S].

Effect of |WW| x |S| As shown in Figure 7, the overall utility grows with the number of
workers and the number of tasks for all the four algorithms. DE-Rainbow and DE-DQN
outperform the baseline algorithms under most cases. When there are a relatively small
number of tasks and the total workload capacity of workers is small, the performance gap
between DE-Rainbow, DE-DQN and other baseline algorithms is not large. However, when
there are many tasks and the total workload capacity of workers is close to the task number,
the performance gap is large.

In summary, DE-Rainbow and DE-DQN perform well on both synthetic and real-world
datasets. What’s more, DE-Rainbow and DE-DQN are more suitable for complex spatial
crowdsourcing scenario where the total workload capacity of workers is close to the total
number of tasks. In this situation, the performance of the DE-Rainbow and DE-DQN can
outperform the other comparison algorithms by 30% and 20% respectively.

Ablation study We conduct experiments with only utility embedding V¥ or coverage embed-
ding V¢ and make comparisons with DE-DQN, DE-Rainbow to study the effect of the
dual-embedding on DQN and Rainbow. Table 8 shows the comparison with the overall
utility of different techniques based on DQN with 1000 and 1200 tasks, while Table 9 shows

Table 8 Comparison based on

f task “4Di “+D DE-D!

DON for 60 workers with Number of tasks V¥+DQN V+DQN QN
capacity mean of 10 on SYN 1000 639.70 696.97 762.22
1200 836.53 804.32 928.67
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Table9 Comparison based on rainbow for 60 workers with capacity mean of 10 on SYN

Number of tasks V*+Rainbow V¢+Rainbow DE-Rainbow
1000 702.15 763.43 811.31
1200 912.24 883.86 986.53

the comparison based on Rainbow. The results are consistent with the results shown in Fig-
ure 5c, which indicates that the potential future utility reflected by coverage embedding V¢ is
more important when the total worker workload capacity is closer to the number of tasks. In
addition, comparing the results of Tables 8 and 9 at the same location shows that Rainbow is
superior to the regular DQN. In summary, the results of the ablation study demonstrate that
the combination of the Rainbow, utility embedding and coverage embedding is beneficial to
the overall performance.

8 Conclusion

In this paper, we focus on solving the global task assignment problem in the spatial crowd-
sourcing with the goal of maximizing the overall utility for all workers, which is defined as
the reward minus the travel cost. We formulate the problem as the Utility-driven Destination-
aware Spatial Task Assignment problem (UDSTA) and prove that it is NP-Complete. To deal
with the problem, we propose a DE-DQN framework and an enhanced DE-Rainbow frame-
work which balance the current and future utility through the dual-embedding. We construct
the proper representations of state, action, and reward of DQN and Rainbow DQN according
to our scenario. For the training phase, we use the experience replay buffer to train the Deep
Q-Network and use the noisy net to train the Rinbow DQN. The experiments based on both
synthetic and real-world datasets verify the effectiveness of the DE-DQN and DE-Rainbow
framework. In the future, we will consider the fairness problem where a homogeneity metric
is presented to balance the utility among workers.
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